Review Quiz 1

Instructions. You have 15 minutes to complete this review quiz. You may not use your calculator. You may not use any other materials. Submit your answers using the provided Google Form.

1. If the cross product of two nonzero vectors is $\langle 0,0,0\rangle$, what can we conclude about the vectors?
(a) Nothing - not enough information. Recall: $|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \sin \theta$, where θ is the
(b) They are orthogonal.
(c) They are parallel.

(d) They are unit vectors.
(e) The vectors have the same magnitude.

$$
\begin{aligned}
& \text { If } \vec{a} \times \vec{b}=\langle 0,0,0\rangle \Rightarrow|\vec{a} \times \vec{b}|=0 \Rightarrow \sin \theta=0 \\
& \Rightarrow \theta=0 \Rightarrow \vec{a} \text { and } \vec{b} \text { must be parallel. }
\end{aligned}
$$

2. Which vector is orthogonal to $\langle 1,3,2\rangle$?
(a) $\langle 1,1,1\rangle$
(b) $\langle 0,1,0\rangle$
Recall: \vec{a} and \vec{b} are orthogonal if $\vec{a} \cdot \vec{b}=0$
(c) $\langle 1,-1,1\rangle$

$$
\langle 1,3,2\rangle \cdot\langle 1,-1,1\rangle=1-3+2=0
$$

(d) $\langle-1,0,1\rangle$
(e) $\langle 2,3,1\rangle$
3. Which of these planes is perpendicular to the line $x=2-t, y=-2+\frac{1}{2} t, z=1+2 t$?
$\begin{array}{ll}\text { (a) } x-\frac{1}{2} y-2 z=5 \\ \text { (b) } 2 x-2 y+z=3 \\ \text { (c) } x-2 y-\frac{1}{2} z=8 \\ \text { (d) }-\frac{1}{2} x+\frac{1}{2} y-z=7 & L \text { This line has direction vector }\left\langle-1, \frac{1}{2}, 2\right\rangle \\ \text { (e) } 2 x+z=4\end{array} \quad$ normal vector $\left\langle 1,-\frac{1}{2},-2\right\rangle$, These 2 vectors are parallel.

(a) $\langle 2 \pi,-\pi, 0\rangle$
(b) $\langle 2,-1,0\rangle$
$\vec{r}^{\prime}(t)=\langle 2, \cos t,-\sin t\rangle$
(c) $\langle 2,0,1\rangle$
(d) $\langle 2 \pi, 0,1\rangle$
$\Rightarrow \vec{r}^{\prime}(\pi)=\langle 2,-1,0\rangle$
(e) $\langle 2 \pi,-1,0\rangle$
5. Find the length of the curve $\vec{r}(t)=\langle\sin t, \cos t, t \sqrt{3}\rangle$ from $t=0$ to $t=10$.
(a) $10+50 \sqrt{t}$
(b) $\cos (10)+\sin (10)+10 \sqrt{3}$

$$
\begin{aligned}
& L=\int_{0}^{10}\left|\vec{r}^{\prime}(t)\right| d t=\int_{0}^{10} 2 d t=20 \\
& \vec{r}^{\prime}(t)=\langle\cos t,-\sin t, \sqrt{3}\rangle \\
& \Rightarrow\left|\vec{r}^{\prime}(t)\right|=\sqrt{\cos ^{2} t+\sin ^{2} t+3} \\
&=\sqrt{1+3}=2
\end{aligned}
$$

(c) $10+10 \sqrt{3}$
(d) 10
(e) 20

