Review Quiz 1

Instructions. You have 15 minutes to complete this review quiz. You may not use your calculator. You may not use any other materials. Submit your answers using the provided Google Form.

- 1. If the cross product of two nonzero vectors is (0, 0, 0), what can we conclude about the vectors?
- Recall: [Ix] = [I]] sin O, where O is the (a) Nothing – not enough information. (b) They are orthogonal. angle between a one to. (c) They are parallel. If = <0,0,0> => |= × = = => sin 0=0 (d) They are unit vectors. (e) The vectors have the same magnitude. $\Rightarrow \theta = 0 \Rightarrow \overline{a}$ and \overline{b} must be parallel. 2. Which vector is orthogonal to (1, 3, 2)? Recall: I and I are orthogonal if I. I = 0 (a) (1,1,1)(b) (0, 1, 0)
 - $\langle 1, 3, 27 \cdot \langle 1, -1, 1 \rangle = 1 3 + 2 = 0$
 - (d) $\langle -1, 0, 1 \rangle$

(c) (1, -1, 1)

(e) (2, 3, 1)

3. Which of these planes is perpendicular to the line x = 2 - t, $y = -2 + \frac{1}{2}t$, z = 1 + 2t?

Which of these planes is perpendicular to the line $x = \frac{1}{2}y - 2z = 5$ (a) $x - \frac{1}{2}y - 2z = 5$ (b) 2x - 2y + z = 3(c) $x - 2y - \frac{1}{2}z = 8$ (d) $-\frac{1}{2}x + \frac{1}{2}y - z = 7$ (e) 2x + x - 4This plane has normal vector $\langle 1, -\frac{1}{2}, -2 \rangle$ These λ vectors are parallel. $T_{N} = \langle 1| - \frac{1}{2}, 2 \rangle$

- 4. The tangent vector to the curve $\vec{r}(t) = \langle 2t, \sin t, \cos t \rangle$ at $t = \pi$ is:
 - (a) $(2\pi, -\pi, 0)$ $\vec{r}'(t) = \langle 2, \text{ cost}, -\text{sint} \rangle$ (b) (2, -1, 0)(c) (2, 0, 1) $\Rightarrow \vec{r}'(\pi) = \langle 2, -1, o \rangle$ (d) $(2\pi, 0, 1)$ (e) $\langle 2\pi, -1, 0 \rangle$
- 5. Find the length of the curve $\vec{r}(t) = (\sin t, \cos t, t\sqrt{3})$ from t = 0 to t = 10.

(a)
$$10 + 50\sqrt{t}$$

(b) $\cos(10) + \sin(10) + 10\sqrt{3}$
(c) $10 + 10\sqrt{3}$
(d) 10
(e) 20
 $= \int_{0}^{10} |\vec{r}'(t)| \, dt = \int_{0}^{10} 2 \, dt = 20$
 $= \int_{0}^{10} |\vec{r}'(t)| \, dt = \int_{0}^{10} 2 \, dt = 20$
 $= \int_{0}^{10} |\vec{r}'(t)| \, dt = \int_{0}^{10} 2 \, dt = 20$